References - F

A B C D E F G H I J K L M N O P Q R S T U V W Y Z

Fahlman, S.E. (1988). Faster-learning variations on back-propagation: an empirical study. In D. Touretzky, G.E. Hinton and T.J. Sejnowski (Eds.), Proceedings of the 1988 Connectionist Models Summer School, 38-51. San Mateo, CA: Morgan Kaufmann.

Fausett, L. (1994). Fundamentals of Neural Networks. New York: Prentice Hall.

Fayyad, U. M., Piatetsky-Shapiro, G., Smyth, P., & Uthurusamy, R. (Eds.). 1996. Advances in Knowledge Discovery and Data Mining. Cambridge, MA: The MIT Press.

Fayyad, U. S., & Uthurusamy, R. (Eds.) (1994). Knowledge Discovery in Databases; Papers from the 1994 AAAI Workshop. Menlo Park, CA: AAAI Press.

Feigl, P., & Zelen, M. (1965). Estimation of exponential survival probabilities with concomitant information. Biometrics, 21, 826-838.

Feller, W. (1948). On the Kolmogorov-Smirnov limit theorems for empirical distributions. Annals of Mathematical Statistics, 19, 177-189.

Fetter, R. B. (1967). The quality control system. Homewood, IL: Richard D. Irwin.

Fienberg, S. E. (1977). The analysis of cross-classified categorical data. Cambridge, MA: MIT Press.

Finn, J. D. (1974). A general model for multivariate analysis. New York: Holt, Rinehart & Winston.

Finn, J. D. (1977). Multivariate analysis of variance and covariance. In K. Enslein, A. Ralston, and H. S. Wilf (Eds.), Statistical methods for digital computers. Vol. III. (pp. 203-264). New York: Wiley.

Finney, D. J. (1944). The application of probit analysis to the results of mental tests. Psychometrika, 9, 31-39.

Finney, D. J. (1971). Probit analysis. Cambridge, MA: Cambridge University Press.

Firmin, R. (2002). Advanced time series modeling for semiconductor process control: The fab as a time machine. In Mackulak, G. T., Fowler, J. W., & Schomig, A. (eds.). Proceedings of the International Conference on Modeling and Analysis of Semiconductor Manufacturing (MASM 2002).

Fisher, R. A. (1918). The correlation between relatives on the supposition of Mendelian inheritance. Transactions of the Royal Society of Edinburgh, 52, 399-433.

Fisher, R. A. (1922). On the interpretation of Chi-square from contingency tables, and the calculation of p. Journal of the Royal Statistical Society, 85, 87-94.

Fisher, R. A. (1922). On the mathematical foundations of theoretical statistics. Philosophical Transactions of the Royal Society of London, Ser. A, 222, 309-368.

Fisher, R. A. (1926). The arrangement of field experiments. Journal of the Ministry of Agriculture of Great Britain, 33, 503-513.

Fisher, R. A. (1928). The general sampling distribution of the multiple correlation coefficient. Proceedings of the Royal Society of London, Ser. A, 121, 654-673.

Fisher, R. A. (1935). The Design of Experiments. Edinburgh: Oliver and Boyd.

Fisher, R. A. (1936). Statistical Methods for Research Workers (6th ed.). Edinburgh: Oliver and Boyd.

Fisher, R. A. (1936). The use of multiple measurements in taxonomic problems. Annals of Eugenics, 7, 179-188.

Fisher, R. A. (1938). The mathematics of experimentation. Nature, 142, 442-443.

Fisher, R. A., & Yates, F. (1934). The 6 x 6 Latin squares. Proceedings of the Cambridge Philosophical Society, 30, 492-507.

Fisher, R. A., & Yates, F. (1938). Statistical Tables for Biological, Agricultural and Medical Research. London: Oliver and Boyd.

Fleishman, A. E. (1980). Confidence intervals for correlation ratios. Educational and Psychological Measurement, 40, 659-670.

Fletcher, R. (1969). Optimization. New York: Academic Press.

Fletcher, R., & Powell, M. J. D. (1963). A rapidly convergent descent method for minimization. Computer Journal, 6, 163-168.

Fletcher, R., & Reeves, C. M. (1964). Function minimization by conjugate gradients. Computer Journal, 7, 149-154.

Fomby, T.B., Hill, R.C., & Johnson, S.R. (1984). Advanced econometric methods. New York: Springer-Verlag.

Ford Motor Company, Ltd. & GEDAS (1991). Test examples for SPC software.

Fouladi, R. T. (1991). A comprehensive examination of procedures for testing the significance of a correlation matrix and its elements. Unpublished master's thesis, University of British Columbia, Vancouver, British Columbia, Canada.

Franklin, M. F. (1984). Constructing tables of minimum aberration p(nm) designs. Technometrics, 26, 225-232.

Fraser, C., & McDonald, R. P. (1988). COSAN: Covariance structure analysis. Multivariate Behavioral Research, 23, 263-265.

Freedman, L. S. (1982). Tables of the number of patients required in clinical trials using the logrank test. Statistics in Medicine, 1, 121-129.

Friedman, J. (1991). Multivariate adaptive regression splines (with discussion), Annals of Statistics, 19, 1-141.

Friedman, J., Hastie, T., &  Tibshirani, R. (2008). Regularization Paths for Generalized Linear Models  via Coordinate Descent. Journal of Statistical Software, 33(1), 1-22.

Friedman, J. H. (1993).  Estimating functions of mixed ordinal and categorical variables using adaptive splines. in S. Morgenthaler, E. Ronchetti, & W. A. Stahel (Eds.) (1993, 73-113). New directions in statistical data analysis and robustness. Berlin: Birkhäuser Verlag.

Friedman, J. H. (1999a). Greedy function approximation: A gradient boosting machine. IMS 1999 Reitz Lecture.

Friedman, J. H. (1999b). Stochastic gradient boosting. Stanford University.

Friedman, M. (1937). The use of ranks to avoid the assumption of normality implicit in the analysis of variance. Journal of the American Statistical Association, 32, 675-701.

Friedman, M. (1940). A comparison of alternative tests of significance for the problem of m rankings. Annals of Mathematical Statistics, 11, 86-92.

Fries, A., & Hunter, W. G. (1980). Minimum aberration 2 (kp) designs. Technometrics, 22, 601-608.

Frost, P. A. (1975). Some properties of the Almon lag technique when one searches for degree of polynomial and lag. Journal of the American Statistical Association, 70, 606-612.

Fuller, W. A. (1976). Introduction to statistical time series. New York: Wiley.

Furnival, G., & Wilson, R. (1974). Regression by leaps and bounds, Technometrics, 16, 499-511.