References - M

A B C D E F G H I J K L M N O P Q R S T U V W Y Z

MacCallum, R. C., Browne, M. W., & Sugawara, H. M. (1996).  Power analysis and determination of sample size for covariance structure modeling.  Psychological Methods, 1, 130-149.

MacGregor, J. F. & Kourti, T. (1995). Statistical Process Control of Multivariate Processes, Control Eng. Practice, Vol. 3, No. 3, 403-414.

Maddala, G. S. (1977). Econometrics. New York: McGraw-Hill.

Maiti, S. S., & Mukherjee, B. N. (1990). A note on the distributional properties of the Jöreskog-Sörbom fit indices. Psychometrika, 55, 721-726.

Makridakis, S. G. (1983). Empirical evidence versus personal experience. Journal of Forecasting, 2, 295-306.

Makridakis, S. G. (1990). Forecasting, planning, and strategy for the 21st century. London: Free Press.

Makridakis, S. G., & Wheelwright, S. C. (1978). Interactive forecasting: Univariate and multivariate methods (2nd ed.). San Francisco, CA: Holden-Day.

Makridakis, S. G., & Wheelwright, S. C. (1989). Forecasting methods for management (5th ed.). New York: Wiley.

Makridakis, S. G., Wheelwright, S. C., & McGee, V. E. (1983). Forecasting: Methods and applications (2nd ed.). New York: Wiley.

Makridakis, S., Andersen, A., Carbone, R., Fildes, R., Hibon, M., Lewandowski, R., Newton, J., Parzen, R., & Winkler, R. (1982). The accuracy of extrapolation (time series) methods: Results of a forecasting competition. Journal of Forecasting, 1, 11-153.

Malinvaud, E. (1970). Statistical methods of econometrics. Amsterdam: North-Holland Publishing Co.

Mandel, B. J. (1969). The regression control chart. Journal of Quality Technology, 1, 3-10.

Mann, H. B., & Whitney, D. R. (1947). On a test of whether one of two random variables is stochastically larger than the other. Annals of Mathematical Statistics, 18, 50-60.

Mann, N. R., Schafer, R. E., & Singpurwalla, N. D. (1974). Methods for statistical analysis of reliability and life data. New York: Wiley.

Mann, N. R., Scheuer, R. M, & Fertig, K. W. (1973). A new goodness of fit test for the two-parameter Weibull or extreme value distribution. Communications in Statistics, 2, 383-400.

Manning, C. D., & Schütze, H. (2002). Foundations of statistical natural language processing (5th printing). Cambridge, MA: MIT Press.

Mantel, N. (1966). Evaluation of survival data and two new rank order statistics arising in its consideration. Cancer Chemotherapy Reports, 50, 163-170.

Mantel, N. (1967). Ranking procedures for arbitrarily restricted observations. Biometrics, 23, 65-78.

Mantel, N. (1974). Comment and suggestion on the Yates continuity correction. Journal of the American Statistical Association, 69, 378-380.

Mantel, N., & Haenszel, W. (1959). Statistical aspects of the analysis of data from retrospective studies of disease. Journal of the National Cancer Institute, 22, 719-748.

Marascuilo, L. A., & McSweeney, M. (1977). Nonparametric and distribution free methods for the social sciences. Monterey, CA: Brooks/Cole.

Marple, S. L., Jr. (1987). Digital spectral analysis. Englewood Cliffs, NJ: Prentice-Hall.

Marquardt, D.W. (1963). An algorithm for least-squares estimation of non-linear parameters. Journal of the Society of Industrial and Applied Mathematics 11 (2), 431-441.

Marsaglia, G. (1962). Random variables and computers. In J. Kozenik (Ed.), Information theory, statistical decision functions, random processes: Transactions of the third Prague Conference. Prague: Czechoslovak Academy of Sciences.

Marsaglia, G. (1996). The Marsaglia Random Number CDROM including the Diehard Battery of Tests of Randomness. Retrieved 7/13/2010 from http://www.stat.fsu.edu/pub/diehard.html.

Marsaglia, G., & Marsaglia, J. C. W. (2004). Evaluating the Anderson-Darling Distribution. Journal of Statistical Software, Vol. 9, Num. 2, 1-5.

Mason, R. L., Gunst, R. F., & Hess, J. L. (1989). Statistical design and analysis of experiments with applications to engineering and science. New York: Wiley.

Massey, F. J., Jr. (1951). The Kolmogorov-Smirnov test for goodness of fit. Journal of the American Statistical Association, 46, 68-78.

Masters (1995). Neural, Novel, and Hybrid Algorithms for Time Series Predictions. New York: Wiley.

Matsueda, R. L., & Bielby, W. T. (1986). Statistical power in covariance structure models. In N. B. Tuma (Ed.), Sociological methodology. Washington, DC: American Sociological Association.

McArdle, J. J. (1978). A structural view of structural models. Paper presented at the Winter Workshop on Latent Structure Models Applied to Developmental Data, University of Denver, December, 1978.

McArdle, J. J., & McDonald, R. P. (1984). Some algebraic properties of the Reticular Action Model for moment structures. British Journal of Mathematical and Statistical Psychology, 37, 234-251.

McCleary, R., & Hay, R. A. (1980). Applied time series analysis for the social sciences. Beverly Hills, CA: Sage Publications.

McCullagh, P. & Nelder, J. A. (1989). Generalized linear models (2nd Ed.). New York: Chapman & Hall.

McCullough, B. D. (1998). Assessing the reliability of statistical software: Part I. The American Statistician, 52, 358-366.

McCullough, B. D. (1999). Assessing the reliability of statistical software: Part II. The American Statistician, 53, 149-159.

McKay, Beckman, and Conover (1979) A comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output from a Computer Code,  Technometrics, 21, 239-245.

McDonald, R. P. (1980). A simple comprehensive model for the analysis of covariance structures. British Journal of Mathematical and Statistical Psychology, 31, 59-72.

McDonald, R. P. (1989). An index of goodness-of-fit based on noncentrality. Journal of Classification, 6, 97-103.

McDonald, R. P., & Hartmann, W. M. (1992). A procedure for obtaining initial value estimates in the RAM model. Multivariate Behavioral Research, 27, 57-76.

McDonald, R. P., & Mulaik, S. A. (1979). Determinacy of common factors: A nontechnical review. Psychological Bulletin, 86, 297-306.

McDowall, D., McCleary, R., Meidinger, E. E., & Hay, R. A. (1980). Interrupted time series analysis. Beverly Hills, CA: Sage Publications.

McKenzie, E. (1984). General exponential smoothing and the equivalent ARMA process. Journal of Forecasting, 3, 333-344.

McKenzie, E. (1985). Comments on 'Exponential smoothing: The state of the art' by E. S. Gardner, Jr. Journal of Forecasting, 4, 32-36.

McLachlan, G. J. (1992). Discriminant analysis and statistical pattern recognition. New York: Wiley.

McLain, D. H. (1974). Drawing contours from arbitrary data points. The Computer Journal, 17, 318-324.

McLean, R. A., & Anderson, V. L. (1984). Applied factorial and fractional designs. New York: Marcel Dekker.

McLeod, A. I., & Sales, P. R. H. (1983). An algorithm for approximate likelihood calculation of ARMA and seasonal ARMA models. Applied Statistics, 211-223 (Algorithm AS).

McNemar, Q. (1947). Note on the sampling error of the difference between correlated proportions or percentages. Psychometrika, 12, 153-157.

McNemar, Q. (1969). Psychological statistics (4th ed.). New York: Wiley.

Melard, G. (1984). A fast algorithm for the exact likelihood of autoregressive-moving average models. Applied Statistics, 33, 104-119.

Mels, G. (1989). A general system for path analysis with latent variables. M. S. Thesis: Department of Statistics, University of South Africa.

Mendoza, J. L., Markos, V. H., & Gonter, R. (1978). A new perspective on sequential testing procedures in canonical analysis: A Monte Carlo evaluation. Multivariate Behavioral Research, 13, 371-382.

Meredith, W. (1964). Canonical correlation with fallible data. Psychometrika, 29, 55-65.

Miettinnen, O. S. (1968). The matched pairs design in the case of all-or-none responses.  Biometrics, 24, 339352.

Miller, R. (1981). Survival analysis. New York: Wiley.

Milligan, G. W. (1980). An examination of the effect of six types of error perturbation on fifteen clustering algorithms. Psychometrika, 45, 325-342.

Milliken, G. A., & Johnson, D. E. (1984). Analysis of messy data: Vol. I. Designed experiments. New York: Van Nostrand Reinhold, Co.

Milliken, G. A., & Johnson, D. E. (1992). Analysis of messy data: Vol. I. Designed experiments. New York: Chapman & Hall.

Miner, G.; Elder, J., Hill, T., Nisbet, R., Delen, D., Fast, A. (20123) Practical Text Mining and Statistical Analysis for Non-structured Text Data Applications. NY: Elsevier.

Minsky, M.L. and Papert, S.A. (1969). Perceptrons. Cambridge, MA: MIT Press.

Mitchell, T. J. (1974a). Computer construction of "D-optimal" first-order designs. Technometrics, 16, 211-220.

Mitchell, T. J. (1974b). An algorithm for the construction of "D-optimal" experimental designs. Technometrics, 16, 203-210.

Mittag, H. J. (1993). Qualitätsregelkarten. München/Wien: Hanser Verlag.

Mittag, H. J., & Rinne, H. (1993). Statistical methods of quality assurance. London/New York: Chapman & Hall.

Monro, D. M. (1975). Complex discrete fast Fourier transform. Applied Statistics, 24, 153-160.

Monro, D. M., & Branch, J. L. (1976). The chirp discrete Fourier transform of general length. Applied Statistics, 26, 351-361.

Montgomery, D. C. (1976). Design and analysis of experiments. New York: Wiley.

Montgomery, D. C. (1985). Statistical quality control. New York: Wiley.

Montgomery, D. C. (1991). Design and analysis of experiments (3rd ed.). New York: Wiley.

Montgomery, D. C. (1996). Statistical quality control (3rd. Edition). New York: Wiley.

Montgomery, D. C., & Wadsworth, H. M. (1972). Some techniques for multivariate quality control applications. Technical Conference Transactions. Washington, DC: American Society for Quality Control.

Montgomery, D. C., Johnson, L. A., & Gardiner, J. S. (1990). Forecasting and time series analysis (2nd ed.). New York: McGraw-Hill.

Mood, A. M. (1954). Introduction to the theory of statistics. New York: McGraw Hill.

Moody, J. and Darkin, C.J. (1989). Fast learning in networks of locally-tuned processing units. Neural Computation 1 (2), 281-294.

Moré, J., J. (1977). The Levenberg-Marquardt Algorithm: Implementation and Theory. In G.A. Watson, (ed.), Lecture Notes in Mathematics 630, p. 105-116. Berlin: Springer-Verlag.

Morgan, J. N., & Messenger, R. C. (1973). TCHAID: A sequential analysis program for the analysis of nominal scale dependent variables. Technical report, Institute of Social Research, University of Michigan, Ann Arbor.

Morgan, J. N., & Sonquist, J. A. (1973). Problems in the analysis of survey data, and a proposal. Journal of the American Statistical Association, 58, 415-434.

Morris, M., & Thisted, R. A. (1986). Sources of error in graphical perception: A critique and an experiment. Proceedings of the Section on Statistical Graphics, American Statistical Association, 43-48.

Morrison, A. S., Black, M. M., Lowe, C. R., MacMahon, B., & Yuasa, S. (1973). Some international differences in histology and survival in breast cancer. International Journal of Cancer, 11, 261-267.

Morrison, D. (1967). Multivariate statistical methods. New York: McGraw-Hill.

Morrison, D. F. (1990). Multivariate statistical methods. (3rd Ed.). New York: McGraw-Hill.

Moses, L. E. (1952). Non-parametric statistics for psychological research. Psychological Bulletin, 49, 122-143.

Mulaik, S. A. (1972). The foundations of factor analysis. New York: McGraw Hill.

Muller, M. E. (1959). A comparison of methods for generating normal deviates on digital computers. Journal for the ACM, 6, 376-383.

Murphy, K. R., & Myors, B. (1998). Statistical power analysis: A simple general model for traditional and modern hypothesis tests.  Mahwah, NJ: Lawrence Erlbaum Associates.

Muth, J. F. (1960). Optimal properties of exponentially weighted forecasts. Journal of the American Statistical Association, 55, 299-306.