References - K


Kabat-Zinn, J., Wheeler, E., Light, T., Skillings, A., Scharf, M.S., Cropley, T.G., Hosmer, D., & Bernhard, J. (1998). Influence of a mindfulness-based stress reduction intervention on rates of skin clearing in patients with moderate to severe psoriasis undergoing phototherapy (UVB) and photochemotherapy (PUVA). Psychosomatic Medicine, 60, 625-632.

Kachigan, S. K. (1986). Statistical analysis: An interdisciplinary introduction to univariate & multivariate methods. New York: Radius Press.

Kackar, R. M. (1985). Off-line quality control, parameter design, and the Taguchi method. Journal of Quality Technology, 17, 176-188.

Kackar, R. M. (1986). Taguchi's quality philosophy: Analysis and commentary. Quality Progress, 19, 21-29.

Kahneman, D., Slovic, P., & Tversky, A. (1982). Judgment under uncertainty: Heuristics and biases. New York: Cambridge University Press.

Kaiser, H. F. (1958). The varimax criterion for analytic rotation in factor analysis. Pyrometrical, 23, 187-200.

Kaiser, H. F. (1960). The application of electronic computers to factor analysis. Educational and Psychological Measurement, 20, 141-151.

Kalbfleisch, J. D., & Prentice, R. L. (1980). The statistical analysis of failure time data. New York: Wiley.

Kane, V. E. (1986). Process capability indices. Journal of Quality Technology, 18, 41-52.

Kaplan, E. L., & Meier, P. (1958). Nonparametric estimation from incomplete observations. Journal of the American Statistical Association, 53, 457-481.

Karsten, K. G., (1925). Charts and graphs. New York: Prentice-Hall.

Kass, G. V. (1980). An exploratory technique for investigating large quantities of categorical data. Applied Statistics, 29, 119-127.

Keats, J. B., & Lawrence, F. P. (1997). Weibull maximum likelihood parameter estimates with censored data. Journal of Quality Technology, 29, 105-110.

Keeves, J. P. (1972). Educational environment and student achievement. Melbourne: Australian Council for Educational Research.

Kendall, M. G. (1940). Note on the distribution of quantiles for large samples. Supplement of the Journal of the Royal Statistical Society, 7, 83-85.

Kendall, M. G. (1948). Rank correlation methods. (1st ed.). London: Griffin.

Kendall, M. G. (1975). Rank correlation methods (4th ed.). London: Griffin.

Kendall, M. G. (1984). Time Series. New York: Oxford University Press.

Kendall, M., & Ord, J. K. (1990). Time series (3rd ed.). London: Griffin.

Kendall, M., & Stuart, A. (1977). The advanced theory of statistics. (Vol. 1). New York: MacMillan.

Kendall, M., & Stuart, A. (1979). The advanced theory of statistics (Vol. 2). New York: Hafner.

Kennedy, A. D., & Gehan, E. A. (1971). Computerized simple regression methods for survival time studies. Computer Programs in Biomedicine, 1, 235-244.

Kennedy, W. J., & Gentle, J. E. (1980). Statistical computing. New York: Marcel Dekker, Inc.

Kenny, D. A. (1979). Correlation and causality. New York: Wiley.

Keppel, G. (1973). Design and analysis: A researcher's handbook. Englewood Cliffs, NJ: Prentice-Hall.

Keppel, G. (1982). Design and analysis: A researcher's handbook (2nd ed.). Englewood Cliffs, NJ: Prentice-Hall.

Keselman, H. J., Rogan, J. C., Mendoza, J. L., & Breen, L. L. (1980). Testing the validity conditions for repeated measures F tests. Psychological Bulletin, 87, 479-481.

Khuri, A. I., & Cornell, J. A. (1987). Response surfaces: Designs and analyses. New York: Marcel Dekker, Inc.

Kiefer, J., & Wolfowitz, J. (1960). The equivalence of two extremum problems. Canadian Journal of Mathematics, 12, 363-366.

Kim, J. O., & Mueller, C. W. (1978a). Factor analysis: Statistical methods and practical issues. Beverly Hills, CA: Sage Publications.

Kim, J. O., & Mueller, C. W. (1978b). Introduction to factor analysis: What it is and how to do it. Beverly Hills, CA: Sage Publications.

Kirk, D. B. (1973). On the numerical approximation of the bivariate normal (tetrachoric) correlation coefficient. Psychometrika, 38, 259-268.

Kirk, R. E. (1968). Experimental design: Procedures for the behavioral sciences. (1st ed.). Monterey, CA: Brooks/Cole.

Kirk, R. E. (1982). Experimental design: Procedures for the behavioral sciences. (2nd ed.). Monterey, CA: Brooks/Cole.

Kirk, R. E. (1995). Experimental design: Procedures for the behavioral sciences. Pacific Grove, CA: Brooks-Cole.

Kirkpatrick, S., Gelatt, C.D., & Vecchi, M.P. (1983). Optimization by simulated annealing. Science 220 (4598), 671-680.

Kish, L. (1965). Survey sampling. New York: Wiley.

Kivenson, G. (1971). Durability and reliability in engineering design. New York: Hayden.

Klecka, W. R. (1980). Discriminant analysis. Beverly Hills, CA: Sage.

Klein, L. R. (1974). A textbook of econometrics. Englewood Cliffs, NJ: Prentice-Hall.

Kleinbaum, D. G. (1996). Survival analysis: A self-learning text. New York: Springer-Verlag.

Kline, P. (1979). Psychometrics and psychology. London: Academic Press.

Kline, P. (1986). A handbook of test construction. New York: Methuen.

Kmenta, J. (1971). Elements of econometrics. New York: Macmillan.

Knuth, Donald E. (1981). Seminumerical algorithms. 2nd ed., Vol 2 of: The art of computer programming. Reading, Mass.: Addison-Wesley.

Kohonen, T. (1982). Self-organized formation of topologically correct feature maps. Biological Cybernetics, 43, 59-69.

Kohonen, T. (1990). Improved versions of learning vector quantization. International Joint Conference on Neural Networks 1, 545-550. San Diego, CA.

Kolata, G. (1984). The proper display of data. Science, 226, 156-157.

Kolmogorov, A. (1941). Confidence limits for an unknown distribution function. Annals of Mathematical Statistics, 12, 461-463.

Korin, B. P. (1969). On testing the equality of k covariance matrices. Biometrika, 56, 216-218.

Kowalski, Scott M. and Potcner, (November 2003) Kevin J. Quality Progress.

Krall, J., Uthoff, V., & Harley, J. (1975). A Step-up Procedure for Selecting Variables Associated with Survival, Biometrics, 31, 49 -57.  

Kramer, M.A. (1991). Nonlinear principal components analysis using autoassociative neural networks. AIChe Journal 37 (2), 233-243.

Kruskal, J. B. (1964). Nonmetric multidimensional scaling: A numerical method. Pyrometrical, 29, 1-27, 115-129.

Kruskal, J. B., & Wish, M. (1978). Multidimensional scaling. Beverly Hills, CA: Sage Publications.

Kruskal, W. H. (1952). A nonparametric test for the several sample problem. Annals of Mathematical Statistics, 23, 525-540.

Kruskal, W. H. (1975). Visions of maps and graphs. In J. Kavaliunas (Ed.), Auto-carto II, proceedings of the international symposium on computer assisted cartography. Washington, DC: U. S. Bureau of the Census and American Congress on Survey and Mapping.

Kruskal, W. H., & Wallis, W. A. (1952). Use of ranks in one-criterion variance analysis. Journal of the American Statistical Association, 47, 583-621.

Ku, H. H., & Kullback, S. (1968). Interaction in multidimensional contingency tables: An information theoretic approach. J. Res. Nat. Bur. Standards Sect. B, 72, 159-199.

Ku, H. H., Varner, R. N., & Kullback, S. (1971). Analysis of multidimensional contingency tables. Journal of the American Statistical Association, 66, 55-64.

Kullback, S. (1959). Information theory and statistics. New York: Wiley.

Kvålseth, T. O. (1985). Cautionary note about R2. The American Statistician, 39, 279-285.