A B C D E F G H I J K L M N O P Q R S T U V W Y Z

Sandler, G. H. (1963). *System reliability engineering*.
Englewood Cliffs, NJ: Prentice-Hall.

Satorra, A., & Saris, W. E. (1985). Power of the
likelihood ratio test in covariance structure analysis. *Psychometrika*,*
50*,* *83-90.

Saxena, K. M. L., & Alam, K. (1982). Estimation
of the noncentrality parameter of a chi squared distribution. *Annals
of Statistics*,* 10*, 1012-1016.

Scheffé, H. (1953). A method for judging all possible
contrasts in the analysis of variance. *Biometrika*, *40*, 87-104.

Scheffé, H. (1959). *The analysis of variance*.
New York: Wiley.

Scheffé, H. (1963). The simplex-centroid design for
experiments with mixtures. *Journal of the Royal Statistical Society*,
*B25*, 235-263.

Scheffé, H., & Tukey, J. W. (1944). A formula for
sample sizes for population tolerance limits. *Annals of Mathematical
Statistics*, *15*, 217.

Scheines, R. (1994). Causation, indistinguishability,
and regression. In F. Faulbaum, (Ed.), *SoftStat '93. Advances in statistical
software 4*. Stuttgart: Gustav Fischer Verlag.

Schiffman, S. S., Reynolds, M. L., & Young, F. W.
(1981). *Introduction to multidimensional scaling: Theory, methods,
and applications*. New York: Academic Press.

Schimek, M. G. (2000). Smoothing and regression: Approaches, computations, and application. New York: Wiley.

Schmidt, F. L., & Hunter, J. E. (1997). Eight common
but false objections to the discontinuation of significance testing in
the analysis of research data. In Harlow, L. L., Mulaik, S. A., &
Steiger, J. H. (Eds.), *What if there were no significance tests. *Mahwah,
NJ: Lawrence Erlbaum Associates.

Schmidt, P., & Muller, E. N. (1978). The problem
of multicollinearity in a multistage causal alienation model: A comparison
of ordinary least squares, maximum-likelihood and ridge estimators. *Quality
and Quantity*,* 12*, 267-297.

Schmidt, P., & Sickles, R. (1975). On the efficiency
of the Almon lag technique. *International Economic Review*, *16*,
792-795.

Schmidt, P., & Waud, R. N. (1973). The Almon lag
technique and the monetary versus fiscal policy debate. *Journal of
the American Statistical Association*,* 68*, 11-19.

Schnabel, R. B., Koontz, J. E., and Weiss, B. E. (1985).
A modular system of algorithms for unconstrained minimization. *ACM
Transactions on Mathematical Software*,* 11*,* *419-440.

Schneider, H. (1986). *Truncated and censored samples
from normal distributions*. New York: Marcel Dekker.

Schneider, H., & Barker, G.P. (1973). *Matrices
and linear algebra* (2nd ed.)*.* New York: Dover Publications.

Schönemann, P. H., & Steiger, J. H. (1976). Regression
component analysis. *British Journal of Mathematical and Statistical
Psychology*,* 29*,* *175-189.

Schrock, E. M. (1957). *Quality control and statistical
methods*. New York: Reinhold Publishing.

Schwarz, G. ( 1978). Estimating the dimension of a model.
*Annals of Statistics*,* 6*,* *461-464.

Scott, D. W. (1979). On optimal and data-based histograms.
*Biometrika*, *66*, 605-610.

Scott M. Kowalski and Kevin J. Potcner, Quality Progress, November 2003

Searle, S. R. (1987). *Linear models for unbalanced
data*. New York: Wiley.

Searle, S. R., Casella, G., & McCulloch, C. E. (1992).*
Variance components*. New York: Wiley.

Searle, S., R., Speed., F., M., & Milliken, G. A.
(1980). The population marginal means in the linear model: An alternative
to least squares means. *The American Statistician*, *34*, 216-221.

Seber, G. A. F., & Wild, C. J. (1989). *Nonlinear
regression.* New York: Wiley.

Sebestyen, G. S. (1962). *Decision making processes
in pattern recognition.* New York: Macmillan.

Seder, L. A. (1962). *Quality improvement*. In
J. M. Juran. *Quality control handbook*. New York:
McGraw-Hill.

Sen, P. K., & Puri, M. L. (1968). On a class of
multivariate multisample rank order tests, II: Test for homogeneity of
dispersion matrices. *Sankhya*,* 30*, 1-22.

Serlin, R. A., & Lapsley, D. K. (1993). Rational
appraisal of psychological research and the good-enough principle. In
G. Keren & C. Lewis (Eds.), *A handbook for data analysis in the
behavioral sciences:* *Methodological issues *(pp. 199-228). Hillsdale,
NJ: Lawrence Erlbaum Associates.

Serlin. R. A., & Lapsley, D. K. (1985). Rationality
in psychological research: The good-enough principle. *American Psychologist,
*40, 7383.

Shapiro, A., & Browne, M. W. (1983). On the investigation
of local identifiability: A counter example. *Psychometrika*,*
48*,* *303-304.

Shapiro, S. S., Wilk, M. B., & Chen, H. J. (1968).
A comparative study of various tests of normality. *Journal of the American
Statistical Association, 63*, 1343-1372.

Shepherd, A. J. (1997). *Second-Order Methods for
Neural Networks.* New York: Springer.

Sheskin, D. J. (1997), Handbook of Parametric and Nonparametric Statistical Procedures, Boca Raton, FL: CRC Press.

Shewhart, W. A. (1931). *Economic control of quality
of manufactured product*. New York: D. Van Nostrand.

Shewhart, W. A. (1939). *Statistical method from the
viewpoint of quality*. Washington, DC: The Graduate School Department
of Agriculture.

Shirland, L. E. (1993). *Statistical quality control
with microcomputer applications. *New York: Wiley.

Shiskin, J., Young, A. H., & Musgrave, J. C. (1967).
*The X-11 variant of the census method II seasonal adjustment program.
*(Technical paper no. 15)*.* Bureau of the Census.

Shumway, R. H. (1988). *Applied statistical time series
analysis.* Englewood Cliffs, NJ: Prentice Hall.

Siddiqi, N. (2006). Credit risk scorecards: Developing and implementing intelligent credit scoring. Wiley & Sons, NY.

Siegel, A. E. (1956). Film-mediated fantasy aggression
and strength of aggressive drive. *Child Development*, *27*,
365-378.

Siegel, S. (1956). *Nonparametric statistics for the
behavioral sciences.* New York: McGraw-Hill.

Siegel, S., & Castellan, N. J. (1988). *Nonparametric
statistics for the behavioral sciences* (2nd ed.) New York: McGraw-Hill.

Silverman, B. W. (1986). Density Estimation for Statistics and Data Analysis. Chapman and Hall, London

Simkin, D., & Hastie, R. (1986). Towards an information
processing view of graph perception. *Proceedings of the Section on
Statistical Graphics, American Statistical Association*, 11-20.

Sinha, S. K., & Kale, B. K. (1980). *Life testing
and reliability estimation*. New York: Halstead.

Smirnov, N. V. (1948). Table for estimating the goodness
of fit of empirical distributions. *Annals of Mathematical Statistics*,
*19*, 279-281.

Smith, D. J. (1972).* Reliability engineering*.
New York: Barnes & Noble.

Smith, K. (1953). Distribution-free statistical methods
and the concept of power efficiency. In L. Festinger and D. Katz (Eds.),
*Research methods in the behavioral sciences* (pp. 536-577). New
York: Dryden.

Sneath, P. H. A., & Sokal, R. R. (1973). *Numerical
taxonomy.* San Francisco: W. H. Freeman & Co.

Snee, R. D. (1975). Experimental designs for quadratic
models in constrained mixture spaces. *Technometrics*, *17*,
149-159.

Snee, R. D. (1979). Experimental designs for mixture
systems with multi-component constraints. *Communications in Statistics
- Theory and Methods*, *A8(4)*, 303-326.* *

Snee, R. D. (1985). Computer-aided design of experiments
- some practical experiences. *Journal of Quality Technology*, *17*,
222-236.

Snee, R. D. (1986). An alternative approach to fitting
models when re-expression of the response is useful. *Journal of Quality
Technology,* *18*, 211-225.

Sokal, R. R., & Mitchener, C. D. (1958). A statistical
method for evaluating systematic relationships. *University of Kansas
Science Bulletin*, *38*, 1409.

Sokal, R. R., & Sneath, P. H. A. (1963). *Principles
of numerical taxonomy*. San Francisco: W. H. Freeman & Co.

Soper, H. E. (1914). Tables of Poisson's exponential
binomial limit. *Biometrika*, *10*, 25-35.

Spearman, C. (1904). "General intelligence," objectively determined and measured. American Journal of Psychology, 15, 201-293.

Speckt, D.F. (1990). Probabilistic Neural Networks.
*Neural Networks 3 (1)*, 109-118.

Speckt, D.F. (1991). A Generalized Regression Neural
Network. *IEEE Transactions on Neural Networks 2 (6)*, 568-576.

Spirtes, P., Glymour, C., & Scheines, R. (1993).
*Causation, prediction, and search. *Lecture Notes in Statistics,
V. 81. New York: Springer-Verlag.

Spjotvoll, E., & Stoline, M. R. (1973). An extension
of the *T*-method of multiple comparison to include the cases with
unequal sample sizes. *Journal of the American Statistical Association*,
*68*, 976-978.

Springer, M. D. (1979). *The algebra of random variables*.
New York: Wiley.

Spruill, M. C. (1986). Computation of the maximum likelihood
estimate of a noncentrality parameter. *Journal of Multivariate Analysis*,*
18*,* *216-224.

Stefansky, W. (1972). Rejecting Outliers in Factorial Designs. Technometrics, 14, 469-479

Steiger, J. H. (1979). Factor indeterminacy in the 1930's
and in the 1970's; some interesting parallels. *Psychometrika*, *44*,
157-167.

Steiger, J. H. (1980a). Tests for comparing elements
of a correlation matrix. *Psychological Bulletin*,* 87*, 245-251.

Steiger, J. H. (1980b). Testing pattern hypotheses on
correlation matrices: Alternative statistics and some empirical results.
*Multivariate Behavioral Research*,* 15*, 335-352.

Steiger, J. H. (1988). Aspects of person-machine communication
in structural modeling of correlations and covariances. *Multivariate
Behavioral Research*,* 23*, 281-290.

Steiger, J. H. (1989). *EzPATH: A supplementary module
for SYSTAT and SYGRAPH. *Evanston, IL: SYSTAT, Inc.

Steiger, J. H. (1990). Some additional thoughts on components
and factors. *Multivariate Behavioral Research*, *25*, 41-45*.*

Steiger, J. H., & Browne, M. W. (1984). The comparison
of interdependent correlations between optimal linear composites. *Psychometrika*,
*49*, 11-24.

Steiger, J. H., & Fouladi, R. T. (1992). *R2:
*A computer program for interval estimation, power calculation, and
hypothesis testing for the squared multiple correlation. *Behavior Research
Methods, Instruments, and Computers, 4, *581582.

Steiger, J. H., & Fouladi, R. T. (1997). Noncentrality
interval estimation and the evaluation of statistical models. In Harlow,
L. L., Mulaik, S. A., & Steiger, J. H. (Eds.), *What if there were
no significance tests. *Mahwah, NJ: Lawrence Erlbaum Associates.

Steiger, J. H., & Hakstian, A. R. (1982). The asymptotic
distribution of elements of a correlation matrix: Theory and application.
*British Journal of Mathematical and Statistical Psychology*, *35*,
208-215.

Steiger, J. H., & Lind, J. C. (1980). Statistically-based tests for the number of common factors. Paper presented at the annual Spring Meeting of the Psychometric Society in Iowa City. May 30, 1980.

Steiger, J. H., & Schönemann, P. H. (1978). A history
of factor indeterminacy. In S. Shye, (Ed.), *Theory Construction and
Data Analysis in the Social Sciences.* San Francisco: Jossey-Bass.

Steiger, J. H., Shapiro, A., & Browne, M. W. (1985).
On the multivariate asymptotic distribution of sequential chi-square statistics.
*Psychometrika*, *50*, 253-264.

Stelzl, I. (1986). Changing causal relationships without
changing the fit: Some rules for generating equivalent LISREL models.
*Multivariate Behavioral Research*,* 21*,* *309-331.

Stenger, F. (1973). Integration formula based on the
trapezoid formula. *Journal of the Institute of Mathematics and Applications*,
*12*, 103-114.

Stevens, J. (1986). *Applied multivariate statistics
for the social sciences.* Hillsdale, NJ: Erlbaum.

Stevens, W. L. (1939). Distribution of groups in a sequence
of alternatives. *Annals of Eugenics*, *9*, 10-17.

Stewart, D. K., & Love, W. A. (1968). A general
canonical correlation index. *Psychological Bulletin*, *70*,
160-163.

Steyer, R. (1992). *Theorie causale regressionsmodelle*
[Theory of causal regression models]. Stuttgart: Gustav Fischer Verlag.

Steyer, R. (1994). Principles of causal modeling: a
summary of its mathematical foundations and practical steps. In F. Faulbaum,
(Ed.), *SoftStat '93. Advances in statistical software 4. *Stuttgart:
Gustav Fischer Verlag.

Stone, M., & Brooks, R. J. (1990). Continuum Regression:
Cross-validated Sequentially Constructed Prediction Embracing Ordinary
Least Squares, Partial Least Squares, and Principal Components Regression,
*Journal of Royal Statistical Society*, 52, No. 2, 237-269.

Storey, JD. (2002) A direct approach to false discovery rates. Journal of the Royal Statistical Society, Series B, 64: 479-498.

Student (1908). The probable error of a mean. *Biometrika*,
*6*, 1-25.

Swallow, W. H., & Monahan, J. F. (1984). Monte Carlo
comparison of ANOVA, MIVQUE, REML, and ML estimators of variance components.
*Technometrics*, *26*, 47-57.