Discriminant Function Analysis Introductory Overview - General Purpose

Discriminant Function Analysis

Discriminant function analysis is used to determine which variables discriminate between two or more naturally occurring groups. For example, an educational researcher may want to investigate which variables discriminate between high school graduates who decide (1) to go to college, (2) to attend a trade or professional school, or (3) to seek no further training or education. For that purpose the researcher could collect data on numerous variables prior to students' graduation. After graduation, most students will naturally fall into one of the three categories. Discriminant Analysis could then be used to determine which variable(s) are the best predictors of students' subsequent educational choice.

A medical researcher may record different variables relating to patients' backgrounds in order to learn which variables best predict whether a patient is likely to recover completely (group 1), partially (group 2), or not at all (group 3). A biologist could record different characteristics of similar types (groups) of flowers, and then perform a discriminant function analysis to determine the set of characteristics that allows for the best discrimination between the types.

See more Discriminant Function Analysis overviews:

Computational Approach

Stepwise Discriminant Analysis

Interpreting a Two-Group Discriminant Function

Discriminant Functions for Multiple Groups



See also, Exploratory Data Analysis and Data Mining Techniques.